Ion channels - Chapter 9

Deducing protein atomic structure from x-ray diffraction patterns of protein crystals

1. Review of where we are, and the remaining challenge—the phase problem

It seems then that we have almost achieved our long sought-after goal to predict the atomic structure of a molecule, based on the diffraction pattern of crystals composed of such molecules. From last lecture, we deduced ways of inferring the ‘Structure Factors’ from the diffraction pattern, where the said factors are equivalent to the magnitude of the Fourier coefficients for the Fourier series representation of the electron density within a unit cell. If we also knew the phases of each Fourier coefficient \((\phi_{h,k,l})\), which seems like a minor detail, we could directly plug into the Electron Density Equation, and calculate directly the electron density

\[
\rho(x, y, z) = \frac{1}{V} \sum_{h,k,l=0}^{\infty} \frac{F(h,k,l)}{\text{Structure Factor}} \cos \left[2\pi \left(\frac{hx}{a} + \frac{ky}{b} + \frac{lz}{c} \right) - \phi_{h,k,l} \right]
\]

where \(x, y, z\) give the position within a unit cell, with corresponding dimensions \(a, b, c\); \(V\) is the volume of a unit cell in angstroms\(^3\); \(F(h,k,l)\) turns out to be proportional to the square root of the intensity at the potential diffraction pattern spot corresponding to a given \(h,k,l\) planar cosine. As an aside, for purposes of deductions later on in this lecture, another more convenient (but equivalent) way of writing the Electron Density Equation is (the complex part will zero out)

\[
\rho(\mathbf{x}) = \frac{1}{V} \sum_{h,k,l=0}^{\infty} \frac{F(\mathbf{h})}{\text{Complex Structure Factor}} \exp \left[2\pi j (\mathbf{h} \cdot \mathbf{x}) \right]
\]

where \(\mathbf{x} = \begin{bmatrix} x/a \\ y/b \\ z/c \end{bmatrix}\); \(\mathbf{h} = [h \ k \ l]\); and \(F(\mathbf{h}) = \left| F(\mathbf{h}) \right| \exp \left[j\phi_{h,k,l} \right]\)

Having calculated \(\rho(x, y, z)\), we could then thread a protein backbone through the electron density, to the best of our ability. Then we could check the accuracy of our molecular threading, by recalculating the structure factors according to the so-called Structure Factor Equation.
DEDUCING MOLECULAR STRUCTURE FROM DIFFRACTION PATTERNS

deduced at the end of Chapter 7. The result we achieved was the Structure Factor Equation below.

\[F(h,k,l) = \sum_{m=1}^{n} f_m \exp\left[j2\pi \left(h \frac{x_m}{a} + k \frac{y_m}{b} + l \frac{z_m}{c}\right)\right] \]

where \(m \) indexes overall all atoms in the unit cell, \(f_m \) is the scattering factor of atom \(m \) (related to total electron mass and how dense or still the atom is), and \(f_{h,k,l,m} \) is the atomic structure factor for atom \(m \). This equation would predict the complex structure factors \(F(h,k,l) \)

\[= F(\mathbf{h}) = |F(\mathbf{h})| \exp[j\phi_{h,k,l}] \]

based on the positions and net electron scattering mass of individual atoms (as we have threaded them) within the unit cell. We could then compare these calculated structure factors against those we measured experimentally from the diffraction patterns. In this way, we could iteratively improve our atomic model of the molecule. Job done!

Not quite. The fatal flaw in this ‘garden rosy path’ is that we have thus far lacked an experimental method to determine the phases \((\phi_{h,k,l}) \), and most of the needed information is actually embedded in these phases. Thus, our initial calculation of \(\rho(x,y,z) \) would be essentially worthless.

The problem of determining the phases of the structure factors then becomes a critical and very difficult challenge. No direct means of measuring the phase are yet available, as they might be for electromagnetic waves at lower frequencies (as in radio or light waves).

2. Determining phase by multiple isomorphous replacement of heavy atoms

The approach here is to give ourselves some GPS landmarks in the diffraction pattern, so that we can unravel the phases. In particular, we implant heavy atoms in a few distinct places within the crystal, without disturbing the overall structure of the crystal. These heavy atoms diffract very strongly relative to other atoms normally found in proteins; thus, their signature in the overall diffraction pattern is obvious (Figure 1), despite the small number of heavy atom ‘beacons.’ For example, when soaked into crystals, the heavy atom \(\text{Hg}^{2+} \) reacts specifically with surface-exposed cysteine residues.

Figure 1. Underlined reflections show differences upon heavy atom labelling (panel b).
Now, we can in principle obtain magnitudes of the complex structure factors for the protein itself \((F_p(h,k,l) \text{ or } F_p)\), and for the protein + heavy atom \((F_{hp}(h,k,l) \text{ or } F_{hp})\). From vector addition rules for complex numbers, we know that \(F_{hp} = F_p + F_H\), where \(F_H\) is the complex structure factor for the heavy atoms alone (Figure 2).

From the intensity of diffraction pattern reflections, we have the intensities \(I_{hp}\) and \(I_p\). As an approximation, we can calculate the magnitude of \(F_H\) as follows. It turns out this approximation is usually good enough.

\[
|F_H|^2 \approx |F_{hp}|^2 - |F_p|^2 = \text{signum}(I_{hp} - I_p)
\]

If we knew the position of the heavy atoms within the unit cell, we could also determine the phase of this \(F_H\) term, according to the Structure Factor Equation for the heavy atoms alone (this equation is good for getting the phase, but the overall magnitude is better corrected for by scaling to the magnitude determination from above

\[
F_H(h,k,l) = \sum_{k=1}^{q} f_k \exp[j2\pi \left(\frac{h x_k}{a} + \frac{k y_k}{b} + \frac{l z_k}{c} \right)]
\]

where there are \(q\) heavy atoms per unit cell, and \(k\) indexes over the heavy atoms in a unit cell. We will develop how the positions of the heavy atoms can be determined in section 3, but for the moment let’s assume we can do this.

Armed with the approximate magnitude of \(F_H\) and its phase, we can then determine the phase of structure factors for the protein alone, as follows. From Figure 2, we know that the following complex vector equality must hold: \(F_p = F_{hp} - F_H\). We know the magnitude and phase of \(F_H\) and we know the magnitudes of \(F_{hp}\) and \(F_p\) (but not their phases). Hence, on the complex plane, we can add \(-F_H\) to the origin, and draw a circle with radius \(|F_{hp}|\) (Figure 3a). This circle represents the constraint on \(F_p\), by the right hand of the equation \(F_p = F_{hp} - F_H\). \(F_p\) must reside somewhere on the circle sketched in Figure 3a. The other constraint on actual complex vector \(F_p\) is that it must reside on a circle, with origin at the graph origin, and with radius equal to the magnitude of \(F_p\). This second constraint is shown by the red circle in Figure 3b. Reproducing
the circle from Figure 3a onto Figure 3b, superimposes the second constraint onto the deliberations in Figure 3b. Hence, the actual complex vector F_P must satisfy both constraints and reside at the intersection of red and gray circles. We have thus determined (for many h, k, l reflections) the phase of F_P, up to an ambiguity of two choices per reflection.

To get around this still critical ambiguity, we repeat the entire process with another heavy atom, which must label at different spots within the unit cell. This is where the multiple in multiple isomorphous replacement comes in. This gives rise to determination of F_H' for the second heavy atom. Repeating the process of determining F_P with this second heavy atom yields the analysis in Figure 4a. The unique solution for F_P is the one that satisfies both heavy atom constraints (circled in red). Thus, we have determined phases and magnitudes for F_P, and can calculate $\rho(x, y, z)$ as given by the Electron Density Equation.

The catch with this method is that it is hard enough to get a good normal protein crystal. Multiple isomorphous replacement requires that we do it twice more, with different heavy atoms. In times of yore, this represented a significant challenge. In section 4, we will talk about a much improved method of phasing, called multiple anomalous diffraction (MAD). This method only requires that we make the protein crystal twice (with and without ‘anomalous’ heavy atoms), yet gives us much more accurate estimates of phase. Also, the insertion of these anomalous heavy atoms is much easier than for say Hg$^{2+}$. Because MAD also requires the capability of determining where heavy atoms (latent or actual) are situated within a unit cell, we will first develop how such fiduciary positions can be determined.
3. Determining the position of heavy atoms by the Patterson function

From the difference of reflection intensities of the HP and P contexts, we can approximately determine \(|F_{HP}|^2 - |F_{HP}| - \left|F_{P}\right|^2 = \text{signum}(I_{HP} - I_{P})\). Without knowledge of phases, we could calculate a ‘close cousin’ of the Electron Density Equation for the heavy atoms, called the Patterson Function, given by

\[
\Delta P(\vec{u}) = \frac{1}{V} \sum_{h,k,l=0}^\infty \left| F_{H}(\vec{h}) \right|^2 \exp\left[2\pi j \left(\vec{h} \cdot \vec{u} \right) \right]
\]

where \(\vec{u} = \left[\begin{array}{c} u/a \\ v/b \\ w/c \end{array} \right]\), and \(\vec{h} = [h \quad k \quad l]\)

This is actually equivalent to the cross-correlation function of heavy-atom electron densities \((C_{H})\), which is a function of the vector between points. This can be seen, somewhat miraculously, as follows.

\[
C_{H}(\vec{u}) = \int_{\text{entire crystal volume}} \rho(\vec{x}) \cdot \rho(\vec{x} + \vec{u}) \, d\vec{x}
\]

\[
= \int_{\text{entire crystal volume}} \left(\frac{1}{V} \sum_{h} F_{H}(\vec{h}') \exp\left[-2\pi j \left(\vec{h}' \cdot \vec{x} \right) \right] \right) \left(\frac{1}{V} \sum_{h} F_{H}(\vec{h}) \exp\left[-2\pi j \left(\vec{h} \cdot (\vec{x} + \vec{u}) \right) \right] \right) \, d\vec{x}
\]

\[
= \frac{1}{V^2} \sum_{h} \sum_{h'} F_{H}(\vec{h}') \cdot F_{H}(\vec{h}) \exp\left[-2\pi j \left(\vec{h} \cdot \vec{u} \right) \right] \int_{\text{entire crystal volume}} \exp\left[-2\pi j \left((\vec{h} + \vec{h}') \cdot \vec{x} \right) \right] \, d\vec{x}
\]

\[
= \frac{N}{V} \sum_{h} F_{H}(\vec{h}) \cdot F_{H}(\vec{h}) \exp\left[-2\pi j \left(\vec{h} \cdot \vec{u} \right) \right]
\]

\[
= \frac{N}{V} \sum_{h} \exp\left[\sum_{k=0}^{q} \left| F_{H}(\vec{h}) \right|^2 \exp\left[2\pi j \left(h x_k / a + k y_k / b + l z_k / c \right) \right] \right]
\]

This is equivalent (up to a factor \(N\), the number of unit cells) to \(\Delta P(\vec{u})\). The last 2-3 steps requires Friedel’s law, given by

\[
F_{H}(h,k,l) = \sum_{k=1}^{q} f_k \exp\left[j 2\pi \left(h x_k / a + k y_k / b + l z_k / c \right) \right]
\]

\[
F_{H}(-h,-k,-l) = \sum_{k=1}^{q} f_k \exp\left[-j 2\pi \left(h x_k / a + k y_k / b + l z_k / c \right) \right] = \overline{F_{H}(h,k,l)}
\]

because \(f_k\) factors must be real.
With this insight, we can ask, what would the cross-correlation function of heavy-atom electron densities look like? It isn’t too bad for a few heavy atoms. Consider the three atoms within the unit cell shown in Figure 5a. All the cross correlation peaks from within this unit cell would show up as peak in the Patterson function shown in Figure 5b. Considering cross correlation peaks from heavy atoms in adjacent unit cells, we get the complete picture shown in Figure 5c. You can easily deduce that there will be $q(q-1)$ Patterson peaks for q heavy atoms per unit cell. The relative arrangement of heavy atoms must include one at the origin, and $(q-1)$ others at some $(q-1)$ of the Patterson peaks. A computer program can exhaustively try all the possibilities, and see which one gives a predicted Patterson function in agreement with that of the experimentally determined function. In this way, we can specify the position of the heavy atoms within the unit cell. Absolute position of heavy atoms by reasonable prediction of amplitudes via equation on page 3.

Figure 5. Generating a Patterson map from three heavy atoms as in panel a. Panel b shows peaks from correlations within a unit cell. Panel c shows all peaks, from correlations within and without a unit cell.
5. Determining phase by multiple anomalous diffraction (MAD)

Here, the most popular and powerful approach is to use a GPS landmark carried by selenium, which is part of selenomethiones, incorporated straight into the recombinant protein by appropriate manipulation of bacterial media when expressing proteins. At certain wavelengths (λ_1) of x-ray illumination, seleniums behave just like other heavy atoms. This would give rise to the HP reflection pair $F_{\text{HP}}(+,\lambda_1)$ and $F_{\text{HP}}(–,\lambda_1)$ (Figure 6). F_H and its Friedel pair (the conjugate of F_H), are as shown. The latter can be determined by the Patterson function analysis, and the Structure Factor Equation for heavy atoms.

At a second wavelength λ_2 (possible with synchrotron radiation to adjust wavelength) selenium doesn’t just scatter radiation, but puts a resonance phase advance on reflections. These can be calculated from standard tables for selenium and knowledge of λ_2. The net effect is to extend F_H along its non-anomalous (λ_1) direction by $\Delta F_i(+)$, and then twist it orthogonally (this is the phase advance effect) by $\Delta F_i(+)$.

Figure 6. Vector complex analysis of the effects of selenium, during normal and anomalous diffraction modes.
From Figure 6, we can deduce that

\[F_{HP}(+\lambda_i) = F_{HP}(+\lambda_2) - \Delta F_R(+) - \Delta F_i(+) \]

This gives rise to the two possible values of \(F_{HP}(+\lambda_i) \) shown in Figure 7.

To get a second constraint, consider how \(F_{HP}(+\lambda_i) \) is related to \(F_{HP}(-\lambda_2) \). Considering Figure 6, we have that

\[F_{HP}(+\lambda_i) = \frac{F_{HP}(+\lambda_2) - \Delta F_R(-)}{\Delta F_i(+) - \Delta F_i(+)} \]

\[F_{HP}(+\lambda_i) = F_{HP}(-\lambda_2) - \Delta F_R(+) + \Delta F_i(+) \]

Deploying this in Figure 8, gives another pair of solutions for \(F_{HP}(+\lambda_i) \), only one of which is compatible with the analysis in Figure 7. Thus, we have determined \(F_{HP}(+\lambda_i) \). With knowledge of \(F_{HP}(\lambda_i) \), we can calculate \(F_p(\lambda_i) \) including phase. In reality, several wavelengths are used to get a really good solution for \(F_{HP}(+\lambda_i) \). This is powerful.
6. Refinement by iteration

Figure 9. Flow diagram of refinement strategy.