FRET for biomolecular imaging I

Ion channels
04-17/19-2013

David T. Yue MD PhD
Calcium Signals Laboratory
Departments of Biomedical Engineering and Neuroscience
Johns Hopkins University School of Medicine
Color mutants of GFP make FRET potentially easy in cells

- FRET: Fluorescence Resonance Energy Transfer

No FRET

FRET
Imaging molecular interactions and biological signals in live cells

- Review of FRET principles
- Unscrambling FRET crosstalk via 3^3-FRET
- Unscrambling FRET crosstalk via E-FRET
- Application 1—Bimolecular binding curves quantified in live cells
- Application 2—Unimolecular FRET sensor monitors calcium dynamics in cardiac myocytes
Fluorescence in the absence of FRET

Fluorophore (CFP)

Energy

hv

$E = \frac{hc}{\lambda}$

$k_D = k_{D/\text{photon}} + k_{D/\text{heat}}$

$QY = \frac{k_{D/\text{photon}}}{k_{D/\text{photon}} + k_{D/\text{heat}}}$

extinction coefficient = $\varepsilon(\lambda)$ (optical capture profile)

shape invariant
Fluorescence in the presence of FRET

\[E = \frac{k_T}{k_T + k_D} = \frac{R_0^6}{R_0^6 + R^6} \]

\[R_0 \sim 49 \text{ Å} \]
Intensity-based quantification of FRET is potentially complicated by CFP/YFP crosstalk.

Aggregate emission with 440 nm excitation

YFP component via FRET and direct excitation

CFP component via direct excitation

excitation at 440 nm
emission (readout) at 535 nm
Imaging molecular interactions and biological signals in live cells

- Review of FRET principles
- Unscrambling FRET crosstalk via 3^3-FRET
- Unscrambling FRET crosstalk via E-FRET
- Application 1—Bimolecular binding curves quantified in live cells
- Application 2—Unimolecular FRET sensor monitors calcium dynamics in cardiac myocytes
Kinetic model of FRET

\[D + A + h_\text{ex} \rightarrow D^\ast + A \]
\[A + D + h_\text{D} \]

\[k_D = k_{D/\text{photon}} + k_{D/\text{heat}} \]

\[QY = \frac{k_{D/\text{photon}}}{k_{D/\text{photon}} + k_{D/\text{heat}}} \]
Kinetic model of FRET

- Efficiency measures the fraction of excited donor molecules that have their energy “stolen” by an acceptor.
- Ranges from 0 to 1

More refined definition of FRET efficiency:

\[E = \frac{k_T}{k_T + k_{D/\text{photon}} + k_{D/heat}} \]

\[D + A \quad D + A \]
\[\uparrow k_{D/heat} \quad \uparrow k_{A/heat} \]

\[D + A + h\nu_{ex} \rightarrow D^* + A \xrightarrow{k_T} D + A^* \]
\[\downarrow k_{D/\text{photon}} \quad \downarrow k_{A/\text{photon}} \]

\[A + D + h\nu_D \quad A + D + h\nu_A \]
Kinetic model of FRET
‘complete’ system

\[D + A + h\nu_{\text{ex}} \rightarrow D^* + A \]
\[A + D + h\nu_D \]

\[k_D = k_{D/\text{photon}} + k_{D/\text{heat}} \]

\[QY = \frac{k_{D/\text{photon}}}{k_{D/\text{photon}} + k_{D/\text{heat}}} \]

No FRET

FRET

excitation (440 nm)
emission (475 nm ~ max)

excitation (440 nm)
emission (527 nm ~ max)
Kinetic model of FRET
‘complete’ system

Supplemental Data for:

Supplemental Appendices on the Three-Cube FRET Method (3³-FRET) and Extensions of the Method to Characterize Properties of Binding Between Donor and Acceptor Molecules, 2nd Edition
Kinetic model of FRET
‘complete’ system

 excitation subsystem

 fluorophore-rate-constant subsystem

 emission-detection subsystem

(includes QY)

(includes QY)

(includes QY)
7.1 Kinetic model of FRET

(‘complete’ system - low excitation limit)

\[P_{D^*} = (1-D_b) \cdot I_o \cdot G_x(D,\lambda_{ex,x}) / k_D + D_b \cdot I_o \cdot G_x(D,\lambda_{ex,x}) / (k_T+k_D) \quad \text{[A1]} \]

\[P_{A^*} = I_o \cdot G_x(A,\lambda_{ex,x}) / k_A + A_b \cdot [I_o \cdot G_x(D,\lambda_{ex,x}) / (k_T+k_D)] \cdot k_T / k_A \quad \text{[A2]} \]

\[
\text{CFP}_x(\lambda_{ex,x},\lambda_{em,x},\text{direct}) = \\
N_D \cdot k_D \cdot [(1-D_b) / k_D + (D_b / (k_T+k_D))] \cdot I_o \cdot G_x(D,\lambda_{ex,x}) \cdot F_x(D,\lambda_{em,x}) \quad \text{[A3]} \\
\text{YFP}_x(\lambda_{ex,x},\lambda_{em,x},\text{direct}) = N_A \cdot k_A \cdot [I_o G_x(A,\lambda_{ex,x}) / k_A] \cdot F_x(A,\lambda_{em,x}) \quad \text{[A4]} \\
\text{YFP}_x(\lambda_{ex,x},\lambda_{em,x},\text{FRET}) = N_A \cdot A_b \cdot [I_o G_x(D,\lambda_{ex,x}) / (k_T+k_D)] \cdot k_T \cdot F_x(A,\lambda_{em,x}) \quad \text{[A5]} \\
\]

Fluorophore photon outputs of various classes. *Master equations.*
3³-FRET unscrambles the crosstalk

\[
FR = \frac{\text{YFP(direct)} + \text{YFP(FRET)}}{\text{YFP(direct)}}
\]

\[
E \cdot A_b = (FR - 1) \cdot \frac{\varepsilon_{\text{YFP}}(440 \text{ nm})}{\varepsilon_{\text{CFP}}(440 \text{ nm})}
\]
3³-FRET unscrambles the crosstalk

$$E \cdot A_b = (FR - 1) \cdot \frac{\varepsilon_{YFP} (440 \text{ nm})}{\varepsilon_{CFP} (440 \text{ nm})}$$

$$FR = \frac{YFP(\text{direct}) + YFP(\text{FRET})}{YFP(\text{direct})}$$

$$FR - 1 = \frac{YFP(\text{FRET})}{YFP(\text{direct})}$$

$$FR - 1 = \frac{N_A \cdot A_b \cdot I_O \cdot G_D \cdot E \cdot F_D}{N_A \cdot I_O \cdot G_A \cdot F_D} = E \cdot A_b \cdot \frac{G_D}{G_A} \quad ; \text{from Eqs. A4 and A5}$$

$$E \cdot A_b = (FR - 1) \cdot \frac{G_A}{G_D} \approx (FR - 1) \cdot \frac{\varepsilon_{YFP} (440 \text{ nm})}{\varepsilon_{CFP} (440 \text{ nm})}$$
Obtaining CFP(direct) at 535 nm (points 3 & 4)

but, S_{CFP} (output of CFP cube [excite 440 nm, emit 480 nm]) = point 2 = CFP(direct at 480 nm)

Point 1, the FRET readout, will be complicated
Obtaining CFP(direct) at 535 nm (points 3 & 4)

- CFP(direct) at 480 nm
- CFP(direct) + YFP(direct) + YFP(FRET)
- YFP(direct) + YFP(FRET)
- YFP(direct)

So, in cells expressing only CFP, we can determine this invariant ratio using 440 nm excitation:

\[S_{CFP} = \text{CFP(direct at 480 nm)} \]

Then, in cells with both CFP and YFP present, CFP(direct @ 535 nm) = \(S_{CFP} \cdot R_{D1} \) = point 3.

And point 4 = \(S_{FRET} \) (point 1) - point 3.
Obtaining YFP(direct) at 535 nm (point 5)

440-nm excitation induces YFP(direct @ 535 nm) = point 5, and CFP(direct @ 535 nm) and YFP(FRET @ 535 nm)

But, exciting at 515 nm only produces YFP(direct @ 535 nm)
Obtaining YFP(direct) at 535 nm (point 5)

Exciting at 440 nm makes YFP(direct @ 535 nm) = point 5, and CFP(direct @ 535 nm) and YFP(FRET @ 535 nm)

But, exciting at 515 nm only produces YFP(direct @ 535 nm)

So, if in cells expressing only YFP, we determine this invariant ratio using 440 and 515 nm excitation

\[R_A = \frac{\text{YFP emission at 535 nm with 440 excitation}}{\text{YFP emission at 535 nm with 515 excitation}} \approx 0.016 \]

Then, in cells with both CFP and YFP are present,

\[\text{YFP(direct @ 535 nm with 440 excitation)} = S_{\text{YFP}} \cdot R_A = \text{point 5}, \]

where \(S_{\text{YFP}} \) = signal from YFP cube with both CFP and YFP present.
3³-FRET unscrambles the crosstalk

\[FR = \frac{YFP(\text{direct}) + YFP(\text{FRET})}{YFP(\text{direct})} \]

\[FR = \frac{S_{\text{FRET}} - R_{D1} \cdot S_{\text{CFP}}}{R_A \cdot S_{\text{YFP}}} \]

\[E \cdot A_b = (FR - 1) \cdot \frac{\varepsilon_{\text{YFP}}(440 \text{ nm})}{\varepsilon_{\text{CFP}}(440 \text{ nm})} \]

Imaging molecular interactions and biological signals in live cells

- Review of FRET principles
- Unscrambling FRET crosstalk via 3^3-FRET
- Unscrambling FRET crosstalk via E-FRET
- Application 1—Bimolecular binding curves quantified in live cells
- Application 2—Unimolecular FRET sensor monitors calcium dynamics in cardiac myocytes
Unscrambling FRET crosstalk via E-FRET

Measure S_{CFP} (440 ex, 480 em, actual signal) before and after selective photobleaching of YFP, yielding $S_{CFP/after}$ and $S_{CFP/before}$.

$$E \cdot D_b = 1 - \frac{S_{CFP/before}}{S_{CFP/after}}$$; from Eq. A3, yielding the 'donor dequenching method'

But can we measure this entity nondestructively. Enter, E-FRET.
Unscrambling FRET crosstalk via E-FRET

\[E \cdot D_b = 1 - \frac{S_{\text{CFP/before}}}{S_{\text{CFP/after}}} = \frac{S_{\text{CFP/after}} - S_{\text{CFP/before}}}{S_{\text{CFP/after}}} = \frac{(\text{CFP}_{\text{FRET/after}} - \text{CFP}_{\text{FRET/before}})}{\text{CFP}_{\text{FRET/after}}/R_{D1}} = \frac{(\text{CFP}_{\text{FRET/after}} - \text{CFP}_{\text{FRET/before}})}{\text{CFP}_{\text{FRET/after}}} \]

From Eq. A3 we have

\[\text{CFP}_{\text{FRET}} \text{(direct)} = N_D \cdot I_O \cdot G_{\text{FRET}}(D) \cdot F_{\text{FRET}}(D) \cdot (1 - E \cdot D_b) \]

\[= N_D \cdot I_O \cdot C \cdot M_D \cdot (1 - E \cdot D_b) \]

\[= N_D \cdot I_O \cdot C \cdot M_D - N_D \cdot D_b \cdot E \cdot I_O \cdot C \cdot M_D \]

\[= N_D \cdot I_O \cdot C \cdot M_D - N_A \cdot A_b \cdot E \cdot I_O \cdot C \cdot M_D \]

Substituting from Eq. A32 for \(N_A \)

\[= N_D \cdot I_O \cdot C \cdot M_D - \frac{YFP_{\text{FRET}} \text{(direct)}}{I_O \cdot C \cdot M_A} \cdot A_b \cdot E \cdot I_O \cdot C \cdot M_D \]

\[\text{CFP}_{\text{FRET}} \text{(direct)} = \frac{N_D \cdot I_O \cdot C \cdot M_D - YFP_{\text{FRET}} \text{(direct)} \cdot A_b \cdot E \cdot M_D / M_A}{\text{CFP}_{\text{FRET}} \text{(direct, after)}} \quad \text{[A33M]} \]
Unscrambling FRET crosstalk via E-FRET

\[CFP_{FRET}(direct, before) = \frac{N_D \cdot I_O \cdot C \cdot M_D - YFP_{FRET}(direct) \cdot A_b \cdot E \cdot M_D}{M_A} \] [A33M]

\[E \cdot D_b = 1 - \frac{S_{CFP/before}}{S_{CFP/after}} \]

\[= \frac{S_{CFP/after} - S_{CFP/before}}{S_{CFP/after}} = \left(\frac{CFP_{FRET/after} - CFP_{FRET/before}}{R_{D1}} \right) = \frac{(CFP_{FRET/after} - CFP_{FRET/before})}{CFP_{FRET/after}} \]

\[= \frac{(CFP_{FRET/after} - CFP_{FRET/before} + YFP_{FRET}(direct) \cdot A_b \cdot E \cdot M_D \cdot M_A)}{YFP_{FRET}(direct) \cdot A_b \cdot E \cdot M_D \cdot M_A + CFP_{FRET/before}} \]
Unscrambling FRET crosstalk via E-FRET

recalling that

\[E \cdot A_b = (FR - 1) \cdot \frac{\varepsilon_{YFP}(440\,\text{nm})}{\varepsilon_{CFP}(440\,\text{nm})} = \frac{YFP_{FRET}(FRET)}{YFP_{FRET}(direct)} \cdot \frac{YFP_{FRET}(direct)}{\varepsilon_{YFP}(440\,\text{nm})} \cdot \frac{\varepsilon_{CFP}(440\,\text{nm})}{\varepsilon_{YFP}(440\,\text{nm})} \]

\[E \cdot D_b = \frac{YFP_{FRET}(direct) \cdot \frac{YFP_{FRET}(FRET)}{YFP_{FRET}(direct)} \cdot \frac{\varepsilon_{YFP}(440\,\text{nm})}{\varepsilon_{YFP}(440\,\text{nm})} \cdot M_D / M_A}{M_D / M_A + CFP_{FRET/before}} \]

\[E \cdot D_b = \frac{YFP_{FRET}(FRET) \cdot \frac{\varepsilon_{YFP}(440\,\text{nm})}{\varepsilon_{CFP}(440\,\text{nm})} \cdot M_D / M_A}{YFP_{FRET}(FRET) \cdot \frac{\varepsilon_{YFP}(440\,\text{nm})}{\varepsilon_{CFP}(440\,\text{nm})} \cdot M_D / M_A + CFP_{FRET/before}} \]

\[E \cdot D_b = \frac{YFP_{FRET}(FRET)}{YFP_{FRET}(FRET) + CFP_{CFP/before} \cdot R_D \cdot (\frac{\varepsilon_{CFP}(440\,\text{nm})}{\varepsilon_{YFP}(440\,\text{nm})}) \cdot M_A / M_D} \]

\[E \cdot D_b = \frac{YFP_{FRET}(FRET)}{YFP_{FRET}(FRET) + CFP_{CFP/before} \cdot G} = \frac{(S_{FRET} - R_D \cdot S_{CFP} - R_A \cdot S_{YFP})}{(S_{FRET} - R_D \cdot S_{CFP} - R_A \cdot S_{YFP}) + S_{CFP} \cdot G} \]

This is the E–FRET equation!
Unscrambling FRET crosstalk via E-FRET

so we have

\[E \cdot A_b = (FR - 1) \cdot \frac{\varepsilon_{YFP}(440 \text{ nm})}{\varepsilon_{CFP}(440 \text{ nm})} = \left(\frac{S_{FRET} - R_{D1} \cdot S_{CFP}}{R_A \cdot S_{YFP}} - 1 \right) \cdot \frac{\varepsilon_{YFP}(440 \text{ nm})}{\varepsilon_{CFP}(440 \text{ nm})} \]

and

\[E \cdot D_b = \frac{YFP_{FRET}(\text{FRET})}{YFP_{FRET}(\text{FRET}) + CFP_{CFP/before} \cdot G} = \frac{(S_{FRET} - R_{D1} \cdot S_{CFP} - R_A \cdot S_{YFP})}{(S_{FRET} - R_{D1} \cdot S_{CFP} - R_A \cdot S_{YFP}) + S_{CFP} \cdot G} \]
A brilliant way to deduce constants experimentally

\[
E = \frac{F_c}{F_c + \text{Supp} \cdot \frac{(E_G) \cdot M_A}{(E_C) \cdot M_D}}
\]

\[
\Rightarrow \quad \frac{F_c}{\text{Supp}} + \frac{\text{Supp} \cdot \frac{E_D}{\text{Supp}}}{\text{Supp}} = \left(\frac{F_c}{\text{Supp}}\right) \left[\frac{(E_G)}{(E_C) \cdot R_A}\right]
\]

\[
\text{Solve for } x\text{ and } y\text{ as: } F_c = \frac{E_G}{R_A}
\]

\[
R_A \left[\frac{(E_C)}{(E_G)}\right] = \frac{F_c}{S_Y} + \frac{S_Y \cdot E_D}{S_Y} \cdot \frac{E_D}{E_G}
\]

\[
\left(\frac{F_c}{S_Y}\right) = -E_D \cdot G_i \cdot \left(\frac{S_Y}{S_Y} + R_A \left[\frac{(E_C)}{(E_G)}\right]\right)
\]

This is key geometric intuition

1. Y-intercept: \(P_A \cdot \frac{(E_C)}{(E_G)} \)
2. Then calculate \(\lambda \text{ and } \mu \)

Ikeda's \(G \) calc is just

\[
\frac{\Delta Y}{\Delta X} = -E_D \cdot G_i
\]
A brilliant way to deduce constants experimentally

CV constructs

Sc/Sy

Fc/Sy

CTV 6-11-09
C40V 6-11-09
C32V 6-11-09
C50V 6-11-09
C50V 6-16-09
C32V 6-16-09
C40V 6-16-09
CTV 6-16-09
CTV 6-18-09
C5V 7-05-09
Imaging molecular interactions and biological signals in live cells

- Review of FRET principles
- Unscrambling FRET crosstalk via 3^3-FRET
- Unscrambling FRET crosstalk via E-FRET
- Application 1—Bimolecular binding curves quantified in live cells
- Application 2—Unimolecular FRET sensor monitors calcium dynamics in cardiac myocytes
Application #1—Binding curves measured in live cells

Case 1: Low Affinity + Optimal Geometry

Case 2: High Affinity + Poor Geometry

\[FR = (FR_{\text{max}} - 1) \cdot A_b + 1 = (FR_{\text{max}} - 1) \cdot \frac{D_{\text{FREE}}}{D_{\text{FREE}} + K_{d,\text{EFF}}} + 1 \]

where \(A_b \) is the fraction of YFP-tagged molecules bound, \(D_{\text{FREE}} \) is the relative number of unbound CFP-tagged molecules, and \(K_{d,\text{EFF}} \) is the effective dissociation constant.
optional for channel geometry

\[A_b = \frac{1}{1 + 2 \cdot K_d / [D_{\text{free}}]} \]

\[A_b = \frac{1}{\left[1 + 2 \cdot K_d \cdot V \cdot N_{\text{avogadro}} / (N_D - A_b \cdot N_A) \right]} \quad [A25] \]

\[A_b = \frac{N_D + N_A + (2 \cdot N_{\text{avogadro}} \cdot K_d \cdot V) - \sqrt{(N_D + N_A + (2 \cdot N_{\text{avogadro}} \cdot K_d \cdot V))^2 - 4 \cdot N_D \cdot N_A}}{2 \cdot N_A} \quad [A26] \]

\[R_{A1} \cdot S_{YFP}(DA,530,535) = \]

\[YFP_{FRET}(440,535,\text{direct}) = N_A \cdot I_0 \cdot G_{FRET}(A,440) \cdot F_{FRET}(A,535) \quad [A28] \]

\[R_{D1} \cdot S_{CFP}(DA,440,480) = \]

\[CFP_{FRET}(440,535,\text{direct}) = N_D \cdot k_D \cdot \left[((1-D_b) / k_D) + (D_b / (k_T+k_D)) \right] \cdot I_0 \cdot G_{FRET}(D,440) \cdot F_{FRET}(D,535) \quad [A27] \]

\[R_{D1} \cdot S_{CFP}(DA,440,480) = \]

\[CFP_{FRET}(440,535,\text{direct}) = [N_D - E_{\text{EFF}} \cdot N_A] \cdot I_0 \cdot G_{FRET}(D,440) \cdot F_{FRET}(D,535) \]

where \(E_{\text{EFF}} = E \cdot A_b \).

\[[A27M] \]
M_A and M_D (gfa, gfd in spreadsheet) can be calculated from optical parameters

\[
G_{\text{FRET}}(A,440) \cdot F_{\text{FRET}}(A,535) \approx C \cdot \[\varepsilon_A(\lambda)\]_{\lambda=430-450\,\text{nm}} \cdot \[f_A(\lambda)\]_{\lambda=505-575\,\text{nm}}
\]

\[
G_{\text{FRET}}(D,440) \cdot F_{\text{FRET}}(D,535) \approx C \cdot \[\varepsilon_D(\lambda)\]_{\lambda=430-450\,\text{nm}} \cdot \[f_D(\lambda)\]_{\lambda=505-575\,\text{nm}}
\]

\[
R_{A_1} \cdot S_{YFP}(DA,530,535) = YFP_{\text{FRET}(440,535,\text{direct})} \approx N_A \cdot I_0 \cdot C \cdot M_A \quad [A32]
\]

\[
R_{D_1} \cdot S_{CFP}(DA,440,480) =
\]

\[
\begin{align*}
\text{CFP}_{\text{FRET}(440,535,\text{direct})} & \approx N_D \cdot I_0 \cdot C \cdot M_D - E_{\text{EFF}} \cdot YFP_{\text{FRET}(440,535,\text{direct})} \cdot M_D / M_A \\
& \quad [A33M]
\end{align*}
\]

\[
N_A \cdot I_0 \cdot C = YFP_{\text{EST}} = \frac{YFP_{\text{FRET}(440,535,\text{direct})}}{M_A} \quad [A36]
\]

\[
N_D \cdot I_0 \cdot C = CFP_{\text{EST}} = \frac{\text{CFP}_{\text{FRET}(440,535,\text{direct})} + E_{\text{EFF}} \cdot YFP_{\text{FRET}(440,535,\text{direct})} \cdot M_D / M_A}{M_D} \quad [A35M]
\]
If we want to do binding by 3^3-FRET

\[
A_b = \frac{N_D + N_A + (2 \cdot N_{\text{avogadro}} \cdot K_d \cdot V)}{2 \cdot N_A} - \sqrt{(N_D + N_A + (2 \cdot N_{\text{avogadro}} \cdot K_d \cdot V))^2 - 4 \cdot N_D \cdot N_A}
\]

\[
A_b = \frac{\text{CFP}_{\text{EST}} + \text{YFP}_{\text{EST}} + K_{\text{d,eff}}}{2 \cdot \text{YFP}_{\text{EST}}} - \sqrt{\left(\frac{\text{CFP}_{\text{EST}} + \text{YFP}_{\text{EST}} + K_{\text{d,eff}}}{2 \cdot \text{YFP}_{\text{EST}}}\right)^2 - 4 \cdot \text{CFP}_{\text{EST}} \cdot \text{YFP}_{\text{EST}}}
\]

\[
K_{\text{d,eff}} = 2 \cdot K_d \cdot V \cdot N_{\text{avogadro}} \cdot I_o \cdot C
\]

\[
FR_{\text{pred}} = 1 + (FR_{\text{max}} - 1)A_b = 1 + E(\varepsilon_D/\varepsilon_A)A_b
\]

\[
\text{Square Error} = (FR - FR_{\text{pred}})^2
\]

determined by measurements

guess parameter

prediction based on guess and measurements

vary guess parameters to minimize this, thereby yielding best guess parameters
If we want to do binding by 3^3-FRET (optional worries about only Ma/Md ratio determination)

$$A_b = \frac{N_D + N_A + (2 \cdot N_{\text{avogadro}} \cdot K_d \cdot V) - \sqrt{(N_D + N_A + (2 \cdot N_{\text{avogadro}} \cdot K_d \cdot V))^2 - 4 \cdot N_D \cdot N_A}}{2 \cdot N_A}$$

If we calibrated to actual N_A and N_D could use above equation directly. One correspondence to in vitro would set average V.

Multiplying numerator and denominator of our standard A_b equation by M_a yields:

$$A_b = \frac{R \cdot C + (E_{\text{EFF/A}} + 1) \cdot Y + Y + \bar{K}_{d\text{EFF}} - \sqrt{(R \cdot C + (E_{\text{EFF/A}} + 1) \cdot Y + Y + \bar{K}_{d\text{EFF}})^2 - 4 \cdot (R \cdot C + E_{\text{EFF/A}} \cdot Y) \cdot Y}}{2 \cdot Y}$$

Where

$R = M_a / M_d$

$C = CFP_{\text{FRET (direct)}} = R_D \cdot S_{\text{CFP (DA)}}$

$Y = YFP_{\text{FRET (direct)}} = R_A \cdot S_{\text{YFP (DA)}}$

$\bar{K}_{d\text{EFF}} = 2 \cdot K_d \cdot V \cdot N_{\text{avogadro}} \cdot I_O \cdot C \cdot M_a$

So an error in the absolute value of M_a would simply scale the hat form of $K_{d\text{EFF}}$ much as our lack of knowledge of $I_O \cdot C$ currently impacts our estimate of $K_{d\text{EFF}}$. We could adjust Ma slightly from our current value to match current $K_{d\text{EFF}}$ values for robust construct.
If we want to do binding by E-FRET

\[
D_b = \frac{N_D + N_A + (2 \cdot N_{\text{avogadro}} \cdot K_{d} \cdot V) - \sqrt{(N_D + N_A + (2 \cdot N_{\text{avogadro}} \cdot K_{d} \cdot V))^2 - 4 \cdot N_D \cdot N_A}}{2 \cdot N_D}
\]

\[
D_b = \frac{\text{CFP}_{\text{EST}} + \text{YFP}_{\text{EST}} + K_{d,\text{EFF}}}{2 \cdot \text{CFP}_{\text{EST}}} - \sqrt{\left(\text{CFP}_{\text{EST}} + \text{YFP}_{\text{EST}} + K_{d,\text{EFF}}\right)^2 - 4 \cdot \text{CFP}_{\text{EST}} \cdot \text{YFP}_{\text{EST}}}
\]

\[K_{d,\text{EFF}} = 2 \cdot K_d \cdot V \cdot N_{\text{avogadro}} \cdot I_0 \cdot C\] \[[A37]\]

\[E_{\text{pred}} = E_{\text{max}} \cdot D_b\]

\[\text{Square Error} = (E_{\text{measure}} - E_{\text{pred}})^2\]

determined by measurements

guess parameter

prediction based on guess and measurements

vary guess parameters to minimize this, thereby yielding best guess parameters
If we want to do binding by E-FRET (optional worries about only Ma/Md ratio determination)

\[
D_b = \frac{N_D + N_A + (2 \cdot N_{\text{avogadro}} \cdot K_d \cdot V) - \sqrt{(N_D + N_A + (2 \cdot N_{\text{avogadro}} \cdot K_d \cdot V))^2 - 4 \cdot N_D \cdot N_A}}{2 \cdot N_D}
\]

If we calibrated to actual \(N_A\) and \(N_D\) could use above equation directly. One correspondence to in vitro would set average \(V\).

Multiplying numerator and denominator of our standard \(A_b\) equation by \(M_a\) yields:

\[
D_b = \frac{R \cdot C + (E_{\text{EFF/A}} + 1) \cdot Y + Y + \tilde{K}_{d\text{EFF}} - \sqrt{(R \cdot C + (E_{\text{EFF/A}} + 1) \cdot Y + Y + \tilde{K}_{d\text{EFF}})^2 - 4 \cdot (R \cdot C + E_{\text{EFF/A}} \cdot Y) \cdot Y}}{2 \cdot (R \cdot C + E_{\text{EFF/A}} \cdot Y)}
\]

where

\[
R = M_a / M_d
\]

\[
C = CFP_{\text{FRET}} (\text{direct}) = R_{D_1} \cdot S_{CFP} (DA)
\]

\[
Y = YFP_{\text{FRET}} (\text{direct}) = R_A \cdot S_{YFP} (DA)
\]

\[
\tilde{K}_{d\text{EFF}} = 2 \cdot K_d \cdot V \cdot N_{\text{avogadro}} \cdot I_O \cdot C \cdot M_a
\]

So an error in the absolute value of \(M_a\) would simply scale the hat form of \(K_{d\text{EFF}}\) much as our lack of knowledge of \(I_O\) currently impacts our estimate of \(K_{d\text{EFF}}\). We could adjust \(M_a\) slightly from our current value to match current \(K_{d\text{EFF}}\) values for robust construct.
Application #1—Binding curve measured in live cells

\[FR = (FR_{\text{max}} - 1) \cdot A_b + 1 = (FR_{\text{max}} - 1) \cdot \frac{D_{\text{FREE}}}{D_{\text{FREE}} + K_{d,\text{EFF}}} + 1 \]

where \(A_b \) is the fraction of YFP-tagged molecules bound, \(D_{\text{FREE}} \) is the relative number of unbound CFP-tagged molecules, and \(K_{d,\text{EFF}} \) is the effective dissociation constant.

\[FR_{\text{max}} \leftrightarrow \text{distance/orientation} \]

\[K_{d,\text{EFF}} \leftrightarrow \text{relative binding affinity} \]

Application #1—Practical pointers on bimolecular FRET: What genuine binding looks like
Application #1—Practical pointers on bimolecular FRET: What genuine binding looks like
Imaging molecular interactions and biological signals in live cells

- Review of FRET principles
- Unscrambling FRET crosstalk via 3^3-FRET
- Unscrambling FRET crosstalk via E-FRET
- Application 1—Bimolecular binding curves quantified in live cells
- Application 2—Unimolecular FRET sensor monitors calcium dynamics in cardiac myocytes
TNXL calcium sensor in adult ventricular myocytes
TNXL calcium sensor in adult ventricular myocytes
Imaging molecular interactions and biological signals in live cells

Doing quantitative biochemistry in live cells

- Review of FRET principles
- Unscrambling FRET crosstalk via 3^3-FRET
- Application 1—Bimolecular binding curves quantified in live cells
- Application 2—Unimolecular FRET sensor monitors calcium dynamics in cardiac myocytes

Michael Erickson – 3^3-FRET, bimolecular binding curves
Michael Tadross – 3^3-FRET for confocal imaging
Lingjie Sang – Spurious FRET and genuine IQ/ICDI binding
Lai Hock Tay – TNXL calcium imaging of cardiomyocytes

AHA, NHLBI, NIMH, NINDS, Kleberg Foundation